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ABSTRACT

The feasibility of applying the principles of matched
field processing to ocean acoustic tomography were studied
under various conditions of ambient noise. Several likeli-
hood estimators were examined (e.g., Bucker, Bartlett,
Maximum Likelihood, etc.). Simulations were initially
conducted for the simple case wherein only one parameter of
the medium was unknown (e.g., SOFAR axis depth, surface
sound speed, position of a single acoustic front). The
method was then applied to the more realistic problem of
locating the boundaries of an eddy in the ocean. For
moderate signal-to-noise ratios, all the estimators were
shown to be able to solve the problem, albeit with different
efficiencies,. For low signal-to-noise ratios, the MLM
scheme proved to be the most reliable especially when a
highly correlated ambient noise was present. 1In all cases,
computer simulations illustrated that mismatching may occur
when the parameterization of the medium is poorly
approximated. Mismatching leads to a decrease 1in the
efficiency of the estimators but it may be still possible to

correctly estimate the environmental characteristics.
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I. INTRODUCTION

As sound waves propagate through the ocean, the complex
acoustic pressure field which 1is generated by the source
depends mainly on the path followed by the acoustic rays and
the sound speed along this particular path. Due to this
Close relationship between the sound speed fielid and the
acoustic pressure field, an attempt may be made to estimate
the range-dependent sound speed profile (SSP) between a
fixed source and an array of receivers. The characteriza-
tion of the SSP from acoustical measurements generally
involves inverse techniques in order to infer the acoustic
nroperties of the medium from the pressure field measured at
the receivers.

Due to the complexity of the ocean the inverse problem
is most often non-linear and underdetermined. Classicial
acoustic tomography solves this problem by linearization.
The tomographic method is akle to estimate the perturbations
cf the sound speed field by comparing the measured travel
times of particular rays with those computed numerically
from a reference sound speed field and a raytrace or a
normal mode alyorithm (Munk and Wunsch, 1978). The
procedure provides maps of the perturbations in the sound
speed field and indicates how different the actual field is

from the one used as a reference. If a large encugh number




of ray paths are used 1in the computations, the spatial
resolution in the map of the sound speed field may be better
than the one obtained from discrete CTD measurements (Howe,
1986) .

Matched field processing is a different type of inverse
method which was first proposed as a method to locate an
acoustic source in the ocean. The principle is to compare
the measured complex acoustic pressures at a vertical array
with those computed from an acoustic model using various
positions of the target source (Bucker, 1976). The
procedure generates a function which is a measure of the
likelihood between the actual acoustic pressure field
created by the source (unknown position) and a replica
pressure field generated from an estimate of the source
location.

This study is an attempt to use matched field processing
as an alternate tool to solve the inverse problem in
acoustic tomography. Given the position of the source and
the receivers, matched field processing 1is employed to
compare the true complex acoustic pressures at the receiving
array with the ones computed from an acoustic propagation
model and various sound speed fields. Computer simulations
are used to demonstrate the performance of various
estimators under different signal-to-noise ratios and noise

correlation matrix structures.




Chapter II provides a theoretical presentation of the
likelihood estimators which are used in this study. It also
illustrates how the noise 1s modeled and added to the
simulated data. The simulations are shown in Chapter III
for various conditions of noise. The first simulations deal
with the simple case where only one parameter of the medium
is unknown (e.g., SOFAR axis depth, surface sound speed,
single frontal boundary) and where the noise is absent. The
next cases are applied to the localization of an eddy in a
noisy medium. Situations of both spatially uncorrelated
noise and correlated noise were examined. Comparison of the
estimators is provided in Chapter IV; the spreading of each
likelihood function about the true value is examined in more
detail under several conditions of noise power and noise
correlation. Also discussed is the problem of incomplete or
poor knowledge of the other environmental parameters, e.g.,
incorrectly specifying the bottom absorption property, and
how this may introduce inconsistency in the procedure and
lead to a decrease in the efficiency of the 1likelihood

functions.




ITI. ACOUSTIC TOMOGRAPHY AND MATCHED FIELDS

A. PRINCIPLES OF MATCHED FIELD PROCESSING

Classical beamforming for plane waves 1is obtained by
measuring the maximum likelihood between the actual value of
the complex signal at each hydrophone and the values
computed from an expected bearing (Ziomek, 1985).

In a similar fashion, the distance to a target in the
near field can be estimated by comparing the actual values
with those computed for different distances. The range is
assumed to be correct when both sets of values correspond to
the same wave front curvature (Ziomek, 1985).

Matched field processing has been used traditionally to
find the location of an acoustic source in a shallow water
environment. The general principle is to store the values
of the received signal (amplitudes and phase) at each
element of the array and then compare them with theoretical
values computed for different possible positions of the
target source. The true 1location of the emitter is
determined when both fields match (Bucker, 1976; Baggeroer,
Kuperman and Schmidt, 1988).

Different criteria may be used to measure the likelihood
or degree of matching. Each one generates a different

function which is generally well adapted for a particular




type of noise. Matched field detection is consistent when
the medium is completely determined.

Matched field tomography deals with the inverse problem.
Given that the source location is known, the purpose of the
procedure 1s to estimate the medium characteristics,
particularly the r ige-dependent sound speed profile. In
this case, the replica or estimated fields are built from
many sound speed profiles and one tries to match them with

the measured one.

B. THEORY IN NOISE-FREE CONDITIONS

1. Bucker Methcd

According to Bucker (1976), the following "detection
factor" may be used as a measure of the difference between

the exact and the replica fields:

RONR

. ~ “KS._- KR,
BUCK = J-1 ¥=1#] " 3
3

(2.1)

where terms are defined as follows:

KR = spatial autocorrelation matrix of one replica

field,

KS = spatial autocorrelation matrix of the actual
field,

NR = number of hydrophones in the array,

F = scaling factor to insure a result between

0 and 1,




<>

time average used to remove the component due
to the noise,

complex conjugate

The matrices KS and KR are defined by

KSyx = R3Rk- (2.2)

KRjk

R'yR'k- (2.3)

where o and g'j denote, respectively, the complex envelope
of the acoustic pressure and the replica pressure at
hydrophone j; similarly for hydrophone k. As demonstrated
by Bucker (1976), it is convenient to define the correlaticn
matrices from the complex envelopes of the signal because
the rapidly-varying time component is removed from the
computations. These complex envelopes are easily obtaineqd
by processing the 1incoming signal through a classical
quadrature demodulator (multiplication by a sine wave
followed by a low-pass filter).

In the absence of noise, the time average |is
unnecessary (KS 1is time independent) and the normalized

detection factor becomes:

R
) ) KS.. KR,
j=1 k=Ipg %K
BUCK = % @ NB R 1/ (2.4)
®RoOL 12, 1 : /
( : KR'k KR (5 Ks.k ksjk.)
351 k=1#j ] j=1 k=1#3 J
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This factor is similar to the classical correlation
coefficient of two random variables. The expression given
above does not use the diagonal elements of the matrices and
can be interpreted as the output of a regular beamformer.
Its value is one in the case of complete equality of the
fields (KR = KS). We note also that the Bucker detection
factor is one when the matrices KR and KS are proportional,
as a consequence of the Schwarz inequality.

2. Heitmever Methecd

Heitmeyer (1984) defined another detection factor
which he called the "source 1location ambiguity function."

Its value is given by the following expression:

MR 2
. Pp By
HETT = &1 (2.5)
) 5
R &'
n=1 "

R . '> 2
- DD ' ej( n~-n
pl DD
HEIT = R 5 (2.6)
B oop,
n=1

It can easily be seen that the function is

unnormalized. From the inequality:




“ (pp. ") . P . P
HEIT . nsl 00 n=1" n=1" .
- NR 5~ NR 5 (2.7)
NR pn' NR }«pnl
=] n=1
an upper limit is found:
NR
1 T2
HEIT < = ] p, (2.8)
n=1

The ambiguity function 1is always bounded by a
gquantity that may be considered as the average power
detected at each hydrophone.

When the replica and the measured fields match

exactly, the expression reduces to the following:

P'n = Bn (2.9)
which vields
:\:Rp212
I P NR
n=1 ' 1 -2
HEIT " & :1pn (2.10)
NR P, ~
=1

The inequality demonstrated previously becomes an identity

when the actual and replica fields are identical.




In order to obtain a normalized ambiguity function,

we divide Equation (2.6) by this upper limit.

NR 2
- ' PO |
- P, P, e~ H‘
HEIT = . 2.11)
Ipr 2 = D 2 (
i L
n=ln n=1 n
3. Relation between Bucker and Heitmeyer Methods

Using the definition of the spatial autocorrelation

matrix, Equation (2.4) may be written:

RN
SR SRS ORI
LBy B "B
C 1 J
BUCK = j=1 k=173 .
(

5 T i
= - t 1 1/2

( 9_.’.‘?“"2' ‘D )
j=1 k=13 0 7 =

SR (2.12)

© ppyepsen)
i=1 k=l#j—JEk el

If we allow the subscripts j and k to be equal, this

expression becomes:

::‘p \“"\
Bat D By By
’ - YR MR T L=
: 172, °F & 1/2
( B RS TS < A N 3) W) ) R
351 k=13 S 421 k=1 0 ¢ S

hence,




p.'p . PP
BUCK = 22 RN = Nk 2.14
NR NR (2.14)
T p‘2 = 2
=17 kALK
or, by changing the subscripts,
| NR 2
BUCK = e A
= = R (2.15)
o2 Tp?
SRR

which 1is exactly the normalized ambiguity function defined
by Heitmeyer in Equation (2.11).

More generally, by developing the expressions of
both functions, we can derive the following relation between

the Bucker and Heitmeyer definitions:

NR NR
- N i |
io1 34 iR
BUCK = HEIT - xm (2.16)

Tnis rela..on is not a simple proportionality ratio
because it changes with the replica fields R'5.
4., Center of Gravity Method
Other likelihood estimations can be developed using

any function which has a maximum in case of perfect

10




matching. The center of gravity method is a procedure which
solves the problem from a more mathematical viewpoint.

In the complex plane, vectors 5 and i' define two
sets of NR points, where NR represents the number of
receivers of the array. The components of the points are

the real and imaginary parts of the complex acoustic

pressures:

set P is composed of points (pj cos :i,pj sin :j)

set P' is composed of points (p'j cos :';i,p'j sin @ ')

In order to compute a detection factor, we calculate
the euclidean distance between the centers of gravity G and
G' of both sets (Figure 2.1). This distance 1is inversely
related to the likelihood of the fields.

With a sum of weights of 1, the points G and G' are

given by their coordinates:

= 1 5
Xg = 3 an cos (2.17)
n=1
1 R
Yq = == ©»_sin : (2.18)
g 3 ot
.Jin=lr1 n
and
1 NR
o= L Tp ! . 2.19
X'g = 1Pn S iy ( )
n=1
1 NR
Y'y = = " p ' sin 2.20
97 R M T n ( )




The distance becomes:

D = ((Xg=Xg')2 + (Yg-¥g')2)1/2 (2.21)
or
NR NR
> . 2., L vaie. 132 1/2
((nélpncos;n-pn cos¢n') +(nilpnsz.n,n P, 'sins )7

We then normalize the gquantity in order to obtain

unity for complete matching.

where Dpax 1s the largest unnormalized distance among all
the replicas.

DN is only an estimation of likelihood. Although it
is possible for two different sets of points to have the
same center of gravity, if they are concentric, this does
not occur in the simulations and the method keeps its
consistency. We will see later that this distance function
may lead to high secondary lobes and thus is not always

reliable.

C. THEORY IN PRESENCE OF NOISE
Although it is possible to use the former expressions

when noise is present which contaminates the signal, the

12




following two functions are more specifically suited for use
in the presence of noise.

Johnson (1982) previously demonstrated the equivalence
between the problem of bearing determination and the
estimation of the spectrum of a signal. Due to this
similarity, all modern spectral estimation algorithms apply
equally to beamforming and matched field processing.

Although many functions may be used, as for example,
MUSIC (Schmidt, 1981) or linear predictor (Johnson, 1982),
we will particularly emphasize the Bartlett and Maximum
Likelihood parameters which are two powerful estimators in
target location problems. These estimators are especially
useful in noisy conditions, because Baggeroer and his
colleagues (1988) showed that they reduce to the Bucker or
Heitmeyer structures when the noise is absent.

1. Bartlett Method

This method comes directly from spectral estimation
theory. Baggeroer, Kuperman and Schmidt (1988) demonstrated
that the power output of a Bartlett beamformer could be

written in the following quadratic form:

BART = W* KT W (2.24)
where W represents the normalized velocity potential vector
of the replica field and KT is the total spatial correlation

matrix of the signal embedded in noise.

13




Due to the proportionality between the velocity
potential and the pressure field, the equivalent expression

will be used:

BART = (5'/|§'|)- KT (P'/|P'|) (2.25)

where P' 1is the complex acoustic pressure vector of the

replica at the array. Under the condition of perfect

matching and no noise,

BART

i
o}

il
lav}

(2.26)

which 1is the summation of all signal powers among the
hydrophones.

In order to normalize the function, we will divide
the estimator by its largest value. For comparison between
the different methods, we will focus on the width of the
main lobe rather than its absolute value.

If p; and n; denote, respectively, the signal and
the noise pressure at hydrophone i, the spatial correlation

matrix has the value:

KTjy = E((Ri*nj) (Ry+njy)°) (2.27)

where E( ) denotes the expectation operation.
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When the signal and the noise are uncorrelated, the
matrix reduces to the simple sum of signal and noise

matrices:
KTi§ = E(RiR§') + E(njny-) (2.28)
KTij = Ksij + KNij (2.29)
These matrices are hermitian and at least

semidefinite.

2. Maximum Likelihood Method

In spectral estimaticn, the Maximum Likelihood
method, also called Capon's method or the minimum variance

method, 1is used to compte the pcwer spectral density of a

random process (Kay, 1988). 1Its expression is given by:

Pyy (£) = (efl Ry ™1 o)1 (2.30)
where:

£ = frequency,

Ryyx = time correlation matrix of the process,

é = vector whose ith component is ejz‘f,

H = transposition of the conjugate matrix.

In a similar way the output of a Maximum Likelihood

beamformer is defined:

15




MIM = (W- KT~1 w)~1 (2.31)
where W and KT have previously been defined.

Following the procedure of Equation (2.25), Equation

(2.31) is modified:
MLM = ((;"/IP'I) kt~1l (p'/|P'|))"?! (2.32)

In the absence of noise, KT reduces to the spatial
autocorrelation of signal only, KS (Equc L.29)) . As
can be seen when the array is composed of two hydrophones,
the matrix is generally singular and has no inverse. The
calculation is made possible by adding a small amount of
noise to the diagonal. As with the Bartlett estimator, the
Maximum Likelihood factor will be divided by its largest

value for normalization.
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III. SIMUIATION OF ACOUSTIC TOMOGRAPHY

Matched field processing has the same form as classical
beamforming. However, instead of comparing the actual field
vector with a plane wave replica vector, we will try to
match the actual vector with a vector computed from an
acoustic propagation model. Measured data will also be
simulated with the same code, then embedded or not in noise

depending on the scenario under investigation.

A. PROCEDURE

1. Description of the Simulation

The receiver is modeled as a vertical array and is
assumed to be composed of 20 hydrophones evenly distributed
between 550 m and 1500 m. The source is located 100 km from
the receiver at a depth of 1000 m. It emits a pure sine
wave (tonal) centered at 100 Hz. Due to the inherent
limitation of vertical angles in the parabolic approximaticn
(Ziomek, 1985), the transmitter was selected to have a
beamwidth of 40°. The bottom is 5000 m deep and is assumed
to be flat and fully absorbing. This choice was made to
speed up the calculations and 1is not a restrictive
assumption. It assumes all the energy propagates by water-

borne paths.
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2. Acoustic Propagation Model

Several models could have been used to simulate the
acoustic fields, for example, normal mode theory or the
parabolic equation (PE). The PE model was used because it
is more suitable for a deep water simulation; for example,
an ocean bottom of 5000 m allows almost 670 propagating
modes at 100 Hz and would have been computationally
intensive using normal mode theory.

The classical PE approximation with split-step
Fourier transform (Coppens, 1982) was available in the
Environmental Acoustic Research Group package of models
resident at NPS. The source code was slightly modified to
save the complex acoustic pressures at the hydrophones in a
file. The measured and the replica complex pressure fields
were then stored in order to run the simulation programs.

3. Simulation of Noise

Noise was added to the measured data in order to
produce a realistic problem and to study the behavior of the
estimators in different environments. Following the
proccedure described by Porter, Dicus and Fizell (1987),
noise was introduced by the mean of its spatial correlation
matrix. This procedure is better than just altering the
data with random noise because the probability density
function of the noise is difficult to estimate. Moreover,

all the estimators considered were written in terms of

correlation matrices.




Ambient noise falls in two categories:

- uncorrelated noise. Its correlation matrix is
proportional to the identity matrix and the
proportionality factor 1is an indicator of the noise
power.

- correlated noise. 1In this case the matrix has non zero
terms outside the diagonal, but 1is nevertheless an
hermitian matrix.

Several attempts to measure the coherence of ambient
noise in the ocean have been conducted during the past
years. One of them was made from the Trident Vertical Array
and 1is described by Urick (1984). Figure 3.1 depicts the
results of this study and has been used to generate a model

of the noise correlation matrix.

The matrix was modeled in the following way:
KNj§ = -2 o= 1= (3.1)

where :2 depends on the noise power and - is a factor which
indicates how fast the coherence falls off outside the
diagonal. The larger : is, the more uncorrelated the noise
is, i.e., its spatial correlation scale becomes shorter.

Due to the spacing between the receivers in the
array and the frequency (100 Hz) used in the simulation,
Figure 3.1 shows that ¢= 1.7 1is consistent with the
observed ambient noise correlation.

Although the spatial correlation matrix of the
noise, KN, 1is generally a complex hermitian matrix, the

analytic modeling shown in Equation (3.1) describes a real
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symmetric matrix. As explained by Cox (1973), this
approximation is wvalid in the special case of zero time
delay, i.e., when it is assumed that the noise is in phase
among all the hydrophones of the vertical array. This
assumption is relatively consistent for low frequency noise.
Below 150 Hz the noise 1is principally due to distant

shipping and arrives mainly from the horizontal.

B. ONE DIMENSIONAL PROBLEM (NOISE-FREE CONDITIONS)

In the following simulation, the shape of the sound
speed profile 1is the only unknown. If the profile is
digitized in 1 m intervals, then for a water depth of 5000
m, one would have to determine 5000 values to match the
complete sound speed profile. Such a procedure would lead
to an unmanageable number of computations, especially if one
tries to match a large number of replica fields. However,
as we are only interested in demonstrating the feasibility
of the procedure, we will begin by studying the simple cases
where only cne or two points of the sound speed profile are
unknown.

1. Determination of a SOFAR Axis Depth

We initially start with a bi-gradient sound speed
profile having a sound speed minimum at 1000 m (Figure 3.2).
Two replica profiles are considered wherein the SOFAR axis
depth 1is altered by +/- 200 m (step 10 m). Note that

because the surface and bottom sound speeds are unchanged,
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the change in axial depth results in a change in the
gradients of both the upper and lower segments of the SSP.

Three estimation techniques, the Bucker, Heitmeyer,
and center of gravity methods are utilized to determine the
true depth of the sound speed minimum. These estimators are
computed from Equations (2.4), (2.11) and (2.23). The
estimated depth of the SOFAR axis is found when an estimator
shows a peak with a detection factor of 1. The results are
shown 1in Figures 3.3, 3.4 and 3.5; each estimator
demonstrates a different behavior.

The Bucker detection factor and the Heitmeyer
ambiguity function both indicate a maximum at the true
location of 1000 m. However a strong side lobe, centered at
1040 m, indicates these two detection factors are not robust
enough to provide an unambiguous selection of the SOFAR axis
depth. In addition, strong secondary side lobes are also
present.

The center of gravity method (Figure 3.5) proves to
be a ketter estimator for this situation. The main lobe is
much narrower and no other lobes exist. For a noise-free
ocean, this is the best estimator among the three to solve
this particular problemn.

2. Determination of Surface Sound Speed

In order to mimic typical seasonal or spatial

changes in the SSP, the surface sound speed was permitted to

fluctuate by +/- 5 m/s about a mean value (step 1 m/s). For
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this situation the SOFAR axial depth was fixed at 1000 m.
Hence, only the upper gradient changes as seen in Figure
3.6. We seek an estimator that will match the true surface
sound speed (solid line in Figure 3.6). Using the same
three estimation techniques as above, the results are shown
in Figures 3.7, 3.8 and 3.9. For this situation, we observe
a nearly identical behavior of the Bucker and the Heitmeyer
functions, both of which have moderate side lobes at about
0.7. As before, the center of gravity estimator remains the
best without any ambiguity due to the presence of secondary
lobes.
3. Determination of an Acoustic Frontal Boundary

To model the presence of an acoustic front two
different sound speed profiles are introduced, one 50 km
from the other. The parabolic equation model was utilized
in this range-dependent problem with the position of the
front (i.e., the range at which the second SSP is
encountered) allowed to vary by +/- 20 km about the true
position (step 1 km). Figure 3.10 provides an illustration
of the SSP setup. The Bucker and the Heitmeyer methods
correctly solve this problem with relatively narrow main
lobes, as shown in Figures 3.11 and 3.12. However, the
center of gravity method does not perform as well (Figure
3.13). Although it is able to locate the correct value,
significant sidelobes are present which could lead to an

ambiguity if too small a detection threshold were chosen.
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This last procedure is obviously not suitable for these
conditions.
4. Comments on the Estimators
In order to completely appreciate the consistency of
each of the previous estimators for the case where only one
factor is unknown, it is important to study their response
to a variety of configurations.
a. Influence of the Number of Hydrophones
In the problem of determining the depth of the
SOFAR axis, the array was composed of 20 hydrophones. It is
possible to run the same simulation by using only a fraction
of the receivers. Plots of the Bucker estimator for four
different numbers of hydrophones are shown in Figure 3.14.
Although the difference 1is small when the number of
hydrophones is reduced from 20 to five, the output of an
array composed only of two receivers changes drastically.
When the number of hydrophones is this small, the side lobes
may have an amplitude of the same order as the main lobe, a
situation which 1leads to full ambiguity. The number of
hydrophones is thus an important parameter which must always
be more than some minimum value. This value is
unfortunately dependent upon the actual problem and the
depth of the array relative to the axial depth. Receivers
which do not intercept much of the acoustic energy can be
easily omitted but those which contain significant amplitude

and phase information should be retained.
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b. Influence of the Frequency

Typically as a result of beamforming, the main
lobe becomes narrower as the frequency of the array
increases. The same phenomenon can be observed in Figure
3.15, wherein the width of the estimator peak is also a
function of the frequency. However, a trade-off exists
between the desired resolution (width of the detection peak)
and the computation time of the PE model which increases
rapidly with frequency. Also if higher frequencies (kilo-
Hertz range) were used, the signal would be 1limited by
absorption which would result in lower signal-to-noise
ratios.

c. Imror ance of Array Position

The depth of the array is of minimal importance
when working 1in shallow water because the entire water
column is nearly insonified. Such is not the case in deep
water where shadow zones exist with relatively low signal
levels. Based on the depth of the source, a first guess of
the depth to position the array would be to place it where
the signal may be expected to occur with a high level, for
example, in the vicinity of the SOFAR axis or near a
convergence zone. The choice will obviously be dependent on

the profile shape.
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C. TWO PARAMETER PROBLEM (NOISY CONDITIONS)
1. Localization of an Eddy

The previous section has shown that the estimators
are generally able to find the correct value in the case of
a simple unknown and a noise-free medium. The same kind of
simulation may be run when two parameters are to be
determined. To test the ability of the various estimators
to deal with a two dimensional problem, we will examine
their ability to 1locate an eddy assumed to be present
between a source and a receiving array. The sound speed
profiles inside and outside the eddy are known. Thus the
only unknowns are the borders of this perturbation of the
sound field. An eddy 20 km in diameter is positioned 40 km
to 60 km from the source. The replica fields are computed
by scanning the limits from 35 km and 45 km for the border
closest to the source, and from 55 km to 65 km for the
farther boundary. Replications at 1 km interval were made.
We will thus try to match the simulated measured data with
121 replica fields. Figure 3.16 presents the true location
of the eddy in this simulation.

Figure 3.17 shows the disposition of source and
array with regard to the energy field for the true location
of the eddy. The array lies on the SOFAR axis, almost 30 km
beyond a convergence zone. From this plot, we can expect a

high level of signal from the channel propagation and large
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differences 1in phase due to multipath propagation (RR
acoustic rays).

Before processing, the measured data are imbedded in
noise. This noise is introduced by the spatial autocorrela-
tion matrix described earlier. The principal assumption of
this simulation is that all correlation matrices are
completely known. For an actual situation, this may not be
true but it is still possible to estimate the total matrix
of noise from the set of measured data.

Because of 1its close similarity to the Bucker
detection factor, the Heitmeyer function will be omitted
from further analysis. The Bartlett and the Maximum
Likelihood functions are introduced for these simulations,
and it will later be seen that these two estimators are well
suited for conditions where the signal-to-nocise ratio is
low.

2. Signal-to-Noise Ratio

The signal-to-noise ratio is a parameter which
depends on the relative powers of the signal and the noise
at the array. Following the procedure of Ziomek (1985), the
signal-to-noise ratio can be written in terms of the noise-
free signal and the spatial autocorrelation matrix of the

noise:

SNR = 20 Logjg - (3.2)




The numerator of this expression may be interpreted
as the summation of all the elements of the signal spatial
correlation matrix. Similarly, the denominator represents
the sum of the entries of the noise correlation matrix.

The SNR was computed for several values of the noise
power, 52, and the correlation parameter, 2, that generate
new values of KNij (Equation (3.1)). The results are
presented in Table 3.1. The expression above shows that the

SNR 1is reduced when the denominator of the argument

NR NR
increases, 1i.e., when the double summation = KNjy is
large due to a significant increase in thel-gogd;lr of the
noise, *2, or a slow decay in the correlation between the
hydrophones, . By using the results presented in Figure

3.1 and the analytic expressicn of the noise matrix given in
Equation (3.1), the correlation of the noise will be
considered high when the factor : is less than 0.57 and low

when it exceeds 2.0.

TABLE 3.1

SIGNAL TO NOISE RATIO AS A FUNCTION OF -2 AND -

2 - 0.57 1.0 1.7 2.0 2.2
10-19 13 dB 16 dB 20 dB 21 dB 21 dB
5 < 10719 -1 dB 3 dB 6 dB 7 dB 7 dB
10-18 -7 dB -3 dB 0 dB 1 dB 1 dB
5 - 10”18 -21 dB  -17 dB -14 dB -13 dB -12 dB
10-17 -27 dB -23 dB -20 dB -19 dB -19 dB
1016 -47 dB  -43 dB -39 dB -39 dB -38 dB
10718 -67 dB  -63 dB -60 dB -59 dB -58 dB
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In the following sections, the performance of
various estimators will be examined for several conditions,
including different cases of noise power and noise
correlation.

3. Bucker Detection Factor

A simulation using the Bucker detection factor was
run for the case of eddy localization under both noise-free
and noisy conditions.

a. Noise-free Conditions

The simulation was run by setting the power of
the noise, 72, to zero. The autocorrelation matrix of the
noise 1is then Jjust the null matrix and the total matrix
reduces to one of signal only, as indicated by Equations
(3.1) and (2.29). A three dimensional plot and a contour
plot of the detection factor are shown in Figure 3.18. The
estimator 1s represented by a surface which has only a
single maximum positioned at the correct location of the
eddy. This suggests that the Bucker method is able to
determine the true 1location of the eddy in a noise-free
environment.

An interesting feature of the plot 1is the
symmetry that exists around both diagonals of the contour.

Moving on the principal diagonal, along the line:

Y = X + 20 (3.3)
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is equivalent to displacing an eddy with a constant diameter
of 20 km. The small intervals between the contour lines
along this path indicate that the location of the eddy can
be determined with reasonable accuracy, once we Kknow its
diameter.

b. Case of Uncorrelated Noise

Uncorrelated noise is generated by choosing a

large value of :. In this case, the correlation falls off
rapidly on either side of the noise matrix diagonal. For a
large enough :, the noise field at one hydrophone is

completely dissimilar to that at another hydrophone and the
noise matrix becomes diagonal. Simulations were run with
.= 10 and different values of -2, All yielded the same
results as in Figure 3.19, which is seen to be identical to
Figure 3.18. This similarity may be explained by recalling

the definition of the Bucker detection factor when noise is

present:
R R
' . KT. KR.
79 poies  JKT K
BUCK = 3=1 k=1#] (2.4)
NRNR 12, ® MR 1/2
( POKRy . KR ) () / KTﬁquﬁ(J
=1 k=15 3=1 k=I#]
where the total correlation matrix is given by
KTjk = Ksjk + KNjk (2.29)
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or,
KTy = KSyx + 32 exp(-:1j-k|) (3.4)

As can be seen, this expression only uses the
cross terms of the matrix. When 8 is large enough, the
second term in the right hand side of Equation (2.29) is
almost negligible for every value of the noise power, :2;
thus the cross terms of the total matrix KT reduce to the

cross terms of the correlation matrix of the signal KS.
KTy ° KSyx, 3 #k (3.5)

By changing the value of '2, the power of the
noise is modified, but the new diagonal terms do not play a
role in the calculations. The Bucker detection factor is
thus insensitive to perfectly uncorrelated noise; in this
case, the performance is exactly identical to the one in
noise-free conditions.

c. Case of Uncorrelated Noise

-2

Any combination of noise power, ¢ <, and noise
correlation, :, yields a different pattern of the detection
factor. In cases for which the spatial correlation of the

noise is high, the Bucker method may still be able to
maximize the detection factor at the correct location, but

the absolute value of the peak will decrease as the
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ambiguity surface becomes flatter. Figure 3.20 illustrates
this type of behavior.

Whenever both ? and -2 generate a low signal-to-

noise ratio (large power, c2, or small correlation
parameter, 2 ), the procedure fails and the localization of
the eddy becomes impossible (see Figure 3.21). We will

quantify the effects of -2 and 2 on localization below.

4. Bartlett Estimator

The same simulations as above were run using the
Bartlett estimator under noise-free and noisy conditions.

a. Noise-free Medium

In a generic hoise-free environment, the

performance of the Bartlett estimator 1is similar to the
Bucker detection factor, as shown in Figure 3.22. As
expected, the same symmetry along the diagonals is still
present.

b. Correlated Noise

The performance of the Bartlett estimator

changes significantly as -2 and : vary. Figure 3.23
provides an example of the plot for -2 = 1071 ana : = 1.7,
where the true location 1is found. Figures 3.24 and 3.25

illustrate failures of the method due to a weak signal-to-
noise ratio brought about by strong noise and highly
correlated noise, respectively. It will 1later be
established that the usual characteristics of the noise in a

deep ocean do not generally lead to this kind of ambiguity.
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5. Maximum Likelihood Method
The MIM estimator was calculated using the same
noise conditions as for the Bartlett function. An
examination of noise-free conditions is not possible because
of the singularity of the correlation matrix. Equation
(2.31) shows that the expression of the Maximum Likelihood
estimator requires the calculation of the inverse matrix

KT 1.
MIM = (We KT-1 w)-1 (2.31)

When noise 1is absent, the matrix KT reduces to the
correlation matrix of the signal KS which is generally
singular.
a. Slightly Correlated Noise
when -2 = 10716 and : = 1.7, the method gives
better results than the Bartlett estimator with relatively
low side lobes (compare Figure 3.26 with Figure 3.23).
b. Strongly Correlated Noise
With a more highly correlated ambient noise
(: = 0.17), as depicted in Figure 3.27, it is still possible
to obtain a correct location of the eddy. By comparing this
plot with Figure 3.25, we note that the Bartlett estimator
was unsuccessful in this case. Nevertheless, even for the

MILM technique, a very low signal-to-noise ratio will result

in a failure as shown in Figure 3.28.
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IV. ANALYSIS OF THE SIMULATION

From the previous simulations, one sees that the
performance of each of the estimators varies significantly
under varying signal-to-noise ratios or source/receiver
geometries or sound speed variations. For example, the
center of gravity method was shown to be the best in
locating the SOFAR axis and determining the surface sound
speed. In contrast, this procedure was the least successful
in the acoustic front localization problem. Therefore the
efficiency of an estimator does not depend only on the type
of ambient noise but also on the particular problem being
solved. In order to continue focusing on a realistic
problem, the eddy localization problem will be studied in
greater detail. The condition of mismatching will be

treated separately.

A. COMPARATIVE STUDY OF THE ESTIMATORS
1. Criterion
To facilitate comparison of the performance of the
different methods, we will calculate the joint central
moments of the different estimators. The joint central
moment provides information on the spread of the detection
factor about the mean. The smaller the moment, the better

the estimate of the parameter of the ocean.
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Using the definition of the central moment of a

multiple random variable as defined by Peebles (1987):

“nk = : , (x=X) N (y—Y)k fxy(x,y) dx dy (4.1)
where:
i, Y = means of the random variables X and Y,
fxy = joint probability density function of X and Y,
n, k = orders of the central moment.

The spreading factor for the MLM method is defined

as the second order central moment of the function MIM(x,y):

S = . MLM(x,y) (x=40)2 (y-60)2 dx dy (4.2)

where x and y are the boundaries of the eddy we are looking
for.
Since we are dealing with a discrete search among
parameter values, this pseudo variance has the form:
NR NR
S = | | MLMjj (44+1-40)2 (54+3-60)2 (4.3)
i=1l j=1
where NF denotes the number of possible values of i and j.
Equation (4.3) indicates how the estimator spreads
around the true frontal boundary values x = 40 and y = 60.

It is a global measure of the estimator performance, not
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just a measure of *he main lobe width. A large value is
associated with significant spreading which indicates a poor
performance, even if the true position 1is actually found.
The value of the spreading factor will be also large when
the ambiguity surface has a large mean value and a small
amplitude (case of significant noise). Analogous spreading
factors may be defined for the Bucker and the Bartlett
functions.

2. Efficiency of the Estimators

The spreading factor defined above has been computed
for the different combinations of -2 and - shown in Table
3.1. The results are presented in Table 4.1 for the Bucker,
Bartlett and MLM methods. From this table it is possible to
compare the efficiency of each technique in a variety of
environments. The values of the correlation factor : have
been chosen to stay consistent with deep water measures.
The range of nolise powers, -2 produced signal-to-noise
ratios between -67 dB and +21 dB.

In order to be consistent in comparing the spreading
factor S of the three schemes, it is convenient to modify
the expression for the Bucker detection factor as defined by
Equation (2.4) by dividing it by its largest value among all
the replicas. The maximum of this new function will always
be one in all situations of noise, as the Bartlett and the

MIM estimators.
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TABLE 4.1

SPREADING FACTOR S OF THE BUCKER (NORMALIZED), BARTLETT
AND MLM ESTIMATORS AS A FUNCTION OF 2 AND :
2 0.57 1.00 1.70 2.00 2.20
SNR=+13dB SNR=+16dB SNR=+20dB SNR=+21dB SNR=+21dB
1019 19,000 18,973 18,950 18,944 18,941
25,924 25,902 25,884 25,880 25,877
114 139 142 140 139
SNR=-1dB SNR=+3dB SNR=+6dB SNR=+7dB  SNR=+7dB
1019 19,280 19,147 19,031 19,004 19,090
26,471 26,364 26,272 26,250 26,239
567 654 708 698 691
SNR=-7dB  SNR=-3dB  SNR=0dB SNR=+1dB  SNR=+1dB
10718 19,632 19,364 19,133 19,078 19,050
27,149 26,935 26,754 26,710 26,688
1,131 1,382 1,411 1,391 1,377
SNR=-21dB SNR=-17dB SNR=-14dB SNR=-13DB SNR=-12dB
-10718 22,400 21,081 19,946 19,671 19,532
32,328 31,320 30,463 30,258 30,153
5,499 6,657 6,766 6,670 6,603
SNR=-27dB SNR=-23dB SNR=-20dB SNR=-193dB SNR=-19dB
10717 25,773 23,188 20,950 20,407 20,131
38,256 36,371 34,771 34,386 34,190
10,630 12,732 12,883 12,687 12,570
SNR=-47dB SNR=-43dB SNR=-39dB SNR=-39dB SNR=-38dB
10716 ’ 54,747 37,381 32,723 30,280
85,126 78,315 76,655 75,805
66,998 72,147 70,060 69,050 68,404
|sSNR=-67dB SNR=-63dB SNR=-60dB SNR=-59dB SNR=-58dB
10~ - . : . :
. N . 124,781
. N x 124,584
Note 1: The signal-to-noise ratio is indicated for each
entry of the table, followed by a triplet of numbers which
represent, respectively, the Bucker (normalized), Bartlett

and MLM spreading factors.

Note 2: The value ~« means that the estimator is unable to
detect the true location of the eddy.
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Table 4.1 provides a good illustration of the
performance of the estimators under several conditions of
noise power and correlation. Figures 4.1, 4.2 and 4.3 show
logarithmic plots of the spreading factor S versus the noise
power 72; each curve represents a value of the correlation
parameter :. It is thus possible to determine the value of
S for any pair of <2 and 3. As is obvious from Table 4.1,
the comparative performance of each method is mostly a
function of the signal-to-noise ratio of the measure.

For SNR less than -50 dB all methods fail to detect
the true location of the eddy. Nevertheless, we observe the
case -2 = 10715 and := 2.2, where the Bartlett and MIM
estimators indicate two different maxima at one. Even in
this case, the amplitude of the functions is so small that
the spreading factor S is very large.

When the SNR is about =40 dB, the Bucker method is
the most efficient estimator, albeit a weak one, as the
spreading remains significant. The superiority of the
scheme increases moreover when the correlation of the noise
decreases.

For other SNR and correlation values, the MLM method
is generally the most efficient. When the SNR = 0 dB or
greater, the advantage of the MILM scheme is obvious with
respect to the other two functions. One also notes that the
MLM estimator is well adapted to resolving highly correlated

noise situations: in such cases, simulations show that the
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width of the main lobe becomes narrower but that the mean

component of the surface increases.

B. MISMATCHING CASE
Mismatching occurs when a parameter used in simulation

of the replica fields has been incorrectly estimated and is
different from the one that created the true data. In the
eddy localization problem, this defect may be introduced in
several ways:

~ a wrong measure of the source frequency,

~ inaccurate estimation of the source or array position,

~ inaccurate estimation of the source beamwidth,

- insufficient knowledge of the bottom 1loss
characterization,

- oversimplification of the SSP.

This 1list is not exhaustive and one must keep in mind
that perfect matching almost never exists due to the
impossibility of any acoustic model to solve the true
acoustic wave equation in the real ocean. Because
mismatching prevents a close likelihood between the actual
and replica fields. It can be thought of as an additional
noise which the correlation matrix has not taken into
account. Mismatching thus results in a degraded estimation
of the total spatial correlation matrix KT. The next
section studies in greater detail two cases where
mismatching 1is created by a change in the bottom 1loss

parameterization and where the borders of the eddy are
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smoother than what we have used previously to simulate the
real measured data.
1. Change in Bottom Loss Parameterization

All simulations were conducted with the assumption
that the bottom was fully absorbing. We will now consider
the bottom to be a perfectly rigid surface with total
reflection and examine how this new treatment modifies the
likelihood functions.

In the absence of noise the difference in phase at
each receiver of the array for both the perfectly reflecting
and fully absorbing bottom conditions is depicted in Figure
4.4, When the bottom is treated as a perfect reflector,
perfect matching will not occur because all the replica
fields are constructed based on the full absorption
assumption.

Figures 4.5 and 4.6 show the result of a simulation
using the MLM estimator with characteristics -2 = 10”17 and
= = 1.7 to represent the situations of no mismatching and
mismatching, respectively. When mismatching occurs, the
amplitude of the peak decreases due to an increase in the
mean value of the likelihood function. The secondary lobes
also become larger. It is important to note that the
degradation observed in Figure 4.6 does not imply that

treating the bottom as a perfect reflector is less correct;

it only means that the matching was done improperly; one




must therefore be consistent in modeling the environmental
input variables.
2. Oversimplification of the Actual Eddy

The previously described eddy 1localization
simulations were run with an excessive simplification of the
true medium. The simulations assumed that there were no
horizontal gradients of sound speed in and outside the eddy
boundaries, i.e., the change of SSP occurred almost
instantly at the borders of the eddy. In an attempt to be
more realistic, the next simulation was conducted after
adding four intermediate SSPs between the two previously
utilized profiles (Figure 4.7). The first intermediate SSP
was introduced 4 km before the border of the eddy and the
next ones added every kilometer thereafter. Actual signal
values were generated with this smoothed baroclinicity, and
replica fields were computed as before with the simplistic
three-profile model. Noise was omitted from this simulation
in order to better appreciate the effect of this
mismatching. Results for the Bucker method are presented in
Figure 4.8. Comparing this plot with Figure 3.18 we see
that the main peak decreases but localization of the eddy
remains possible. The implication of this simulation is
that identification (location) of strong frontal boundaries,
such as the north wall of the Gulf Stream or ice edge
fronts, could be fairly exact but weaker, open ocean

mesoscale eddies may pose more of a difficult problem
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(assuming the same number of profiles are used to estimate
the replica fields).

The above examples suggest that in cases where the
signal-to-noise ratio is quite 1low, it is possible for
mismatching to hide the true location of the maximum and so
possibly lead to a failure of the procedure. As often as
possible, mismatching must be avoided by a comprehensive
knowledge of the parameters used in the replica fields

calculations.

C. COMMENTS ON THE PROCEDURE
As we were only interested in using matched field
processing in acoustic tomography, many simplifications have
been made to run the simulations. Although the procedure
seems to be applicable and efficient in most cases, it is
necessary to test its applicability to more complex
problems.
1. Envirconment
It was assumed in all the simulations that only one
or two parameters were unknown, for example, the surface
sound speed or the eddy 1location. For actual oceanic
situations, many more properties can be expected to vary in
space and time. Extending this study to a heterogeneous
medium is theoretically feasible but vastly increases the
number of unknowns.
Modeling a shallow water environment has not been

considered as a possible mechanism to speed up the
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calculations even though matched field processing remains
pocssible in this kind of environment. Several limitations
are apparent. A better knowledge of the bottom structure is
required. The ambient noise is moreover gquite complex in
coastal waters and its spatial correlation matrix would be
difficult to model. As bottom interaction is important for
estimator calculations (see the mismatching case), it is
possible to coisider the bottom loss as an unknown parameter
and attempt to determine it through matched field
processing. To examine this special case, the replica
fields are generated using nine different bottom loss curves
and one attempts to find the actual bottom loss curve.
Figure 4.9 illustrates the different bottom loss curves that
have been used to create the replica fields in shallow water
(300 m). The maximum of the likelihood estimator occurs
when the replica bottom corresponds to the actual loss.
However, since the various curves are so similar in shape
and because the bottom loss has only a weak to moderate
effect on the transmission loss, the correct bottcm loss
curve 1s not sharply defined. This implies that a correct
specification of bottom loss for a low loss bottom is not
required; not so for a high loss bottom.

2. Model Consideration

a. Resolution
In the typical target location problem, the

medium parameters are generally considered constant. It is
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only necessary to run the PE model once to compute the
pressure field at different distances. However, when the
SSP becomes the unknown in the tomography problem, the PE
model must be run for each replica. If we wish to find the
correct shape of the SSP from 0 to 300 m in the seasonal
thermocline with a resolution of 1 m, the model needs to be
run 10300 times if the sound speed at each depth can have
ten different values. This simple example illustrates the
trade-off between resoluti « and computer time. In the
problem of eddy 1localization, where the 1limits of the
perturbation were allowed to vary over 11 values, the PE
model was run 121 times. For a determination of more than
two unknowns, the basic theory of the estimators is still
valid but the representation cf the ambiguity surfaces
becomes unachievable due to limitations in computer run
time.
b. Noise Approximation

The correlation matrix o¢ the ambient noise was
modeled by a symmetric matrix decaying exponentially around
the diagonal. This approximation is rather poor. even in
deep water, because the power of the noise is assumed to be
the same at each hydrophone. A better simulation would have
been to consider the matrix of a noise which is, like the
signal, a so’ tion of the wave equation. Our matrix 1is

symmetric even though the actual matrix of the complex noise
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needs to be hermitian, because the cross-correlations are
complex.
3. Correlation Matrix

If the spatial correlation matrix of the noise were
known, it could be introduced in the replica fields and we
could deal with it as with a noise-free problem.

In practice, it 1is not possible to separately
compute the noise and the signal correlation matrices. The
total matrix needs to be estimated from the noisy signal at
the hydrophones. Several techniques are available, as for
example the Fourier method recommended by Johnson (1982).
As the matrix becomes only an estimate; we should expect a

slight mismatching and then decreasing efficiency of the

estimators.
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V. CONCLUSION

Matched field processing has been shown to be an
efficient way to solve the inverse problem in ocean acoustic
tomography when the ocean can be characterized by a few
parameters. The estimators which have been used (Bucker,
Bartlett, Maximum Likelihood, etc.) were generally robust
enough to find the actual sound speed field of the ocean

under usual conditions of noise power and noise correlation.

A. SUMMARY OF THE RESULTS

For noise-free conditions or high signal-to-noise ratios
(SNR), all the estimators are able to correctly determine
the actual unknown parameter of the medium. The Bucker
detection factor was shown to be the best function when the
SNR was moderate.

The efficiency of the various estimators, illustrated by
their spreading about the true value, decreased in cases of
low SNR introduced by a large power or a high spatiza’
correlation of the noise. The Maximum Likelihood method was
shown to be the best scheme when the ambient noise was
highly correlated because its spreading was less sensitive
to the degree of spatial <correlation than the other
estimators.

The effect of mismatching, when introduced in the

simulatizns, generated a decrease 1in the efficiency of the

83




methods. Analysis of several degrees of mismatching
indicated that unambiguous results can be expected from
matched field processing provided that the parameterization
of the medium is exact enoujh to generate consistent replica

pressure fields.

B. WEAKNESS OF THE SIMULATION

In order to deal with reasonable computer times, only
the cases of one or two unknown parameters were studied.
For the same reason, the actual acoustic pressure field was
compared with only a few replica fields. This limitation
leads to moderate resolution in the results which could
easily be improved by the generation of more replica fields.

The weakness in modeling the noise field has already
been emphasized 1in Chapter III.A. Further simulations
should be done with a noise correlation matrix, KN, that has
actually been obtained from measurements at sea. Further
work using a more realistic parameterization of the ocean
should ke done, e.g., with empirical orthogecnal functions

(EOF) and using the technique to estimate EOF coefficients.
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APPENDIX

FORTRAN 77 PROGRAM USED IN THE SIMULATION

PROGRAM ESTINA
ACOUSTIC TOMOGRAFPHY USING MATCHED FIELD FROCESSING

THIS PROGRAM DRAWS THRELE KINDS OF DETECTION FACTOR IN 3D
1T COMPARES BUCKER,BARTLETT AND MLM HETHODS

THE MOISE IS INTRODUCED BY ITS CORRELATION HATRIX

THE NOISE MATRIX IS PROTORTIONAJ, 10 TDENTITY MATRIX IN CASE OF
UNCORRELATED MOISF BUI' 1S IN GENFRAL HERHITIAN MATRIX

THE EXACT(OR MEASURED) PHASES AND HAGHTTUDES ARF, READ 1IN THE
FILE EXACT DATA
THE COMPUTED PARAMETERS ARE READ ON THE FILE NEAR DATA

1HE HODEL ALLOWS A HAXTHUN OF 20 RECEIVERS DURE 1O THE USE OF THL
PARARBOLIC FENUATION FROH THFE FARG PACKAGE

KS IS THF COMPLEX MATRIX OF MEASURLD PARAHF[FRS
A 1S THE HMATRIX OF GUESSED FARAMETERS WE WANT TO HATCH

C NR IS THE NUMBER OF R[LFIVFR?(HAX]HHH 202
C NF 1S THE COMMON NUMRER OF POSSIRLE VALUES FOR 2 UNKNOWHS
¢ THE NUNRBER OF FIELDS WE MATCH 1§ ACTUALLY NF*NF
C
G
REAL PPHASE(20),FHAGNT(20),X( 11),YE]1) DF(11,11) ,DFCONT(11,11)
REAL BARr&ll,ll JFHLH(T] 112 nookT 11 11y, seonTln, 1)
COMPLEX A(20,70) .ES(20,20), OF(L1,11) KT(20,20)
COMPILX W(20),C800  ETERN
RCAL kN(ZO,ZUZ,N”rH
C 99 DEFINES THE FILE OF MEASURCD(EXACT) DATA
C 98 DEFINES TIFE FILE OF DATA WE WANT TO HATCH
HR=20
NF=11
C SSA? THE HEAQURFD VALUES IN FILE EXACT DATA
READ§9§ 600) PHAGNI(1),PPHASE (1)
1 CONTINU
600  FORMAT( E11.4,2X,F7.4)
C
C
C COHPUTE THE ELFNENTS OF MATRIX KS
999 DO 2 J=- NR
po 3 k=1,N
ﬁJ K$= FUAGHT (J)*FHAGNT (K)*EXP(CHPLX (0. ,PPHASE(J) -
2 PPIASE(K)))
3 CONTINUE
2 CONTINUE,
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C DEFINE TIE CORRELATION MATRIX KN OF THE CORRELATED NOISE
FRINT*,' VALUE OF SIGHA2 7
READ* $ [Gl1A2 :
FRINT*,' VALUE OF BETA 17
READ*, BETA
DO & J=1,NR
Do 5 f=1,NR
KN(I,J3=SIGHA2*EXP (-BETAABS(1-J))
CONTINUE
CONTINUE

&o:

....................................

COMPUTE TIHE TOTAL COVARIANCE MATRIX INCLUDING THE NOISE
BY ADDING THE NOISE AND THE SIGNAL CORREIATTON MATRICES
DO 6 J=1,NR

D0 7 I=1,NR
KT(I,J)=KS(1,J)4KN(T,J)

CONTINUE
CONTINUE

eolele]

QO

BEGINNING OF HAIN LOOP FOR THE HF RUNS

DO 101 IHDEX=1,NF
DO 100 JNDEX=1,NF
READ PARAMETERS OF EXPECTED FIELD [N FILE MEAR DATA
DO 8 [-1,HNR
READ(98,400) PHAGNT(1),PPHASE(T)
8 CONTINUE

COMPUTE ELEMENTS OF MATRIX A
DO 9 J=1,NR
DO 10 K=i,NR
ACJ x%=ﬁnAGN1(J)*rnAGNI(K)*ﬁxr(cnrhx(o., FPITASE (J) -
e PPMASE (K)))
10 CONTINUE
9 CONTINUE
COOCCCCCCCCCOCCCCCeeCnCeCeeaee
C BUCKER DETECTION FACTOR C
Ceaccecececooeeceseoeeeeeaeeeeee
CDF (THDEX, JNDEX)=CHFLL (0. ,0.)
DO 11 J=1.NR
DO 12 K=1,NR
IF(K.NE.J) CDF(INDEX
* o A(J,KYFCONJIG (KT (J,K)$
continge
CONTINUF,

CE(-- f~z IS ACTUALLY RFEAL DUE 10 TROTERTY OF HATRIGES
A _AND KT fiENCE WE KEEP ONLY THE REAL TART OF IT
DF(INDEX, JNDEX)=REAL(CDF (INDEX, JNDEX))

NORMALIZE THE DF FACTOR
FACIOR=0.
FACT=0,

DO 13 J=LﬁNR
DO 14 X=1,NR
IE(K.NE.J)FACTOR=FACTOR+A (J,K)*GONJG(A(J,K))
%EéK.NE.J)FACT=FACT4KT(J,K)"CUNJG(KT(J,K5)
CONTINUE

O

—
<

JNDEX)—CDF (INDEX, JNDEX) +

—_—J

QAa ACGr-—

UE

— s
w &
Q
=]
=
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FACTOR=SQRT(FACTOR)
FACT=SQRT(FACT
DF(INDEX JHDEX)=DF ( INDEX, JNDFX)(FALI/FA(IUR

DF (INDEX, JNDEX )=ARS (DF (IRDEX , JNDEX) )
C
100 CONTINUE
éOl CONTINUE
C NORMALIZE BY THE LARGEST VAIUR
BHAX=0.
DO 67 I1=1,NF
DO 68 J=1
lr(nr(i J) GE. BMAX) BHAX=DF(T,J)
68 CONTINUE
67 CONTINUE
C
DO 69 I=1,NF
DO 70 J=1,NF
DE(T,JI=DF(1,.0)/BHAX
70 CONTINUE,
69 CONTINUT,
C
¢ DISSELAY THE MATRIX  OF HORMALIZED DETECTION FACTOR
FRINIY, ' BUCKER FACIOR DAIRIX
DO 15 'I=1,NF
lewr(s 777 ;fpr(l LI=1,NF)
777 TORMAT (V1 (2%, F4.2))
15 CONTTHUR
C
e C O CCCCCC L e
C BARTLELT ESTUMALIOR C

cerrceccocorecoererceenens
REWIND 98

C REGINNING OF MATN 1LOOP FOR CLUE NF RIS
DO 201  JTHDEX=1.NF
c nO 200 .”HlF,X=],NF
s READ FARAMETERS OF REFLICA FIRLD
DO 50 [=1,NR
READ(94,600) THAGHIC(T). PPHASE (1)
50 CONTTHUF,
C
C DETERYINE THE NORMALIZED GCOMPLEX VECTOR W

NORM=0,
DO 16 1—1 HR
NORM- NURH*FHAQHI(I)""Z
1A CONTIHUE
NORM=SOR T (NORt)

no &le (inyN .
ORM)*PHAGNI (1) EXP(CMPLX (0., PFIASE (I
17 ONTINOE (D ( ()

C
C COMPUTE TIIE. BARTLETT FAGTOR

CoUI=(0. 0. )

DO 18 1=,N

DO 19 J=1,NR
C3uil= UM CONIG (W (1) ) KT (1,0 )W (J)

19 CONTINUE
1R CONTINUE

BART(INDEX, JNDEX)=REAL(CSUN)
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200 CONTINUE
201 CONTINUF.

C NORMALIZATION BY THE HIGHEST VAIUE
BARHAX=0.
DO 20 1=1,NF
DO 21 J=1,NF -
IF(BART(I,J).GE.BARMAX) BARMAX=BART(I,J)
21 CONTINUE
20  CONTINUE

C
DO 22 I=1,NF
DO 23 J=t NF
BART(1,J)=BARI(1,J)/BARHAX
23 CONTINUE
22 CONTINIUF,
C
G DISSPLAY THE MATRIX OF NORMALIZED DETECTION FAGTOR

FRINTY, " BARTLETT FACTORS NATRIX
DO 24  I=1,NF
WRITE(6,777)(BART(],.7),J=1 HT)
24 CONTINUFR
C

geccereceecrceceecceccoee

C HLM ESTINATOR C

crercegeeceecrececeeoee
REWIND 98

C
C INMVERT THE CORRELATION MATIRIX KT
CALL CHIRIN(NR,KT,NR,DFTERH)
C
C BEGINNTMNG OF MATN 1,0OOF TOR THE HF RUNS

D9 301 JHNDEX=1,NF
DO 300 JNDEX=1,NF

C
G READ PARAMETERS OF REFPLICA FIELD
DO 51 I=1,NR
READ(94,600) FHAGNIL(T),FPIASE (1)
1 CONTINUE

DETERHINE THE NORHALIZED COMPIEX VECTOR W
NORM=0,

IR SR

HORH=NORUFPHAGNT (1) 2
26 CONTINUE
HORN=SORT(NORM)

DO 27 I=1

=1,NR
W(L)=(1./NORM)*PHAGNT (1) EXP(CHPLX (0., PPHASF (1
; con T HOE / ) (1) ( ( ()

COMPUTE THF, MIM FACTOR
CSUN=(0. ,0.
DO 28 I=i N
0o égug=léﬁﬁ N
=CSUMACONJG (W( 1) )*KT(1,J)*W(J
29 CONTINUE (L)RTAL, Iy N )
28 CONTINUE
FHLH(INDEX , JNDEX)=REAL(1. /CSUM)

300 CONTINUE
ani COMNTINUF,

o]

acs
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C NORMALIZATION BY THE HIGHEST VALUE
FHLMAX=0.
DO 30 I=1,NF
DO 31 J=1,NF
TF(FMLM{1,J) .GE.FHLHAX) FHLMAX=FMIM(I,J)
31 CONTINUE
30  CONTINUE

DO 32 I=1,NF
DO 33 J=1,NF
FMLM(I,J)=FMLH(L,J)/FMLHAX
CONT INUE
CONTINUF,

DISSPLAY THE MATRIX OF NORMALIZED DETECTION FACTOR
PRINT*,' MIM FACTORS MATRIX'
DO 34 'I=1,NF
WRITE(6,777) (FMIM(T,J),J=1,NF)
34 CONTINUE

CQuw
[(SX%)

C
C
COCORECCCCECCOCECHeCCliCriretGCoCiCCrChCrCeeChrierree
C COMPUIE THE SFREADING FACIOR OF THE ESTIMATORS C
CCCCCCrLCCCeCocreeCceCeCcecrcocCCeCCrCCecreCrcCrCCCectcrecee
WDE=0.
WBART=0.
WEHLM=0,
DO €50 1=} ,NF
DO 651 J=1,NF
WDE=WDF IDF (I Jg*(ﬁh.‘I-ho.)**z*(SAlJ—GO e
WBART=WBART4 BART (1 ,.0)" (A4 . 41-40. )25 (5htJ-60)i2
WEHLU=WENLIFHIN (T 307 (A4 A 1-40, )72 (54 1T-60) )2
€31 CONT INUF,
650 CONTINUE
C
C
FRINT®, ! WDE= ' WDF
FRIND*, | WBART= ' WRBART
PRINTZ " WEMLH= " WEHIH
C
G

FHD
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